TM-313-A

ERRATUM AND ADDENDUM TO TM-313

L. C. Teng

July 14, 1971

Both Eqs. (1) and (9) are approximate equations. For Eq. (1) the approximation assumes that $\frac{x}{\beta} << 1$ and terms of the second and higher orders in $\frac{x}{\beta}$ are neglected. These conditions are satisfied for the example cases given on pp. 3 and 4.

For Eq. (9) the approximation assumes that $\frac{\Delta\beta}{\beta}$ << 1 and $\frac{\Delta B!}{B!}$ << 1, and terms of the second and higher orders in $\frac{\Delta\beta}{\beta}$ and $\frac{\Delta B!}{B!}$ are neglected. These conditions are <u>not</u> satisfied for the example cases given on pp. 6 and 7. The results are, therefore, invalid.

Eq. (10) shows that $\frac{\Delta\beta}{\beta}$ (if << 1) is a sinusoidal function of θ with amplitude \sqrt{U} . For \sqrt{U} > 1, then, at some θ -locations $\frac{\Delta\beta}{\beta}$ < -1 and the modified $\overline{\beta}$ = β + $\Delta\beta$ < 0 which is certainly not meaningful. This is another indication that Eq. (9) and its solution Eq. (10) are invalid when $\frac{\Delta\beta}{\beta}$ = \sqrt{U} > 1.

For the case of one δ -function focusing bump the exact solution can be obtained using the transfer matrix. The transfer matrix around the entire closed orbit plus the bump (ϵ_0) is

$$\begin{pmatrix} 1 & 0 \\ -\varepsilon_0 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cos 2\pi \nu + \begin{pmatrix} \alpha_0 & \beta_0 \\ -\gamma_0 & -\alpha_0 \end{pmatrix} \sin 2\pi \nu \end{bmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ -\varepsilon_{o} & 1 \end{pmatrix} \cos 2\pi \nu + \begin{pmatrix} \alpha_{o} & \beta_{o} \\ -(\gamma_{o} + \varepsilon_{o} \alpha_{o}) & -(\alpha_{o} + \varepsilon_{o} \beta_{o}) \end{pmatrix} \sin 2\pi \nu$$

where, as before, $\epsilon_o \equiv \frac{(\Delta B \, ! \, \ell)_o}{B \rho}$. The modified "tune" $\overline{\nu}$ and β -function at the bump $\overline{\beta}_o$ are, therefore, given by

$$\begin{cases}
\cos 2\pi \overline{\nu} = \cos 2\pi \nu - \frac{\varepsilon_0 \beta_0}{2} \sin 2\pi \nu \\
\overline{\beta}_0 \sin 2\pi \overline{\nu} = \beta_0 \sin 2\pi \nu.
\end{cases}$$
(1A)

As ε_0 varies from zero to either positive or negative values stability limits cos $2\pi\overline{\nu}=\pm 1$ will be encountered at certain values of ε_0 . Beyond these values of ε_0 , $|\cos 2\pi\overline{\nu}|>1$ and the motion is unstable. At the stability limits the modified β -function $\overline{\beta}$ is ∞ everywhere except at discrete θ -locations where $\overline{\beta}=0$, namely $\frac{\Delta\beta}{\beta}\equiv\frac{\overline{\beta}-\beta}{\beta}$ is ∞ everywhere except at these discrete θ -locations where $\frac{\Delta\beta}{\beta}=-1$. Although at the stability limit this exact $\frac{\Delta\beta}{\beta}$ is hardly sinusoidal, one may expect that the stability limits correspond roughly to $\sqrt{\overline{\upsilon}}=1$ when the "approximate" $\overline{\beta}$ as given by Eq. (10) also goes to zero at these discrete θ -locations. Eq. (13) gives, then, for the stability limits

$$\frac{\varepsilon_0 \beta_0}{2} = \pm \sin 2\pi \nu \quad \text{"approximate"} \quad (2A)$$

while the exact conditions are given by Eq. (1A) as

$$\frac{\varepsilon_0^{\beta_0}}{2} = \frac{\cos 2\pi \nu \mp 1}{\sin 2\pi \nu}$$

$$= -\frac{1}{\cos 2\pi \nu \pm 1} \sin 2\pi \nu. \text{ exact}$$
 (3A)

The exact and the "approximate" conditions are identical when ν = (integer) $\pm \frac{1}{4}$.

For the main ring $v \approx 20\frac{1}{4}$. Both Eqs. (2A) and (3A) give for the stability limits

$$\frac{\varepsilon_0^{\beta_0}}{2} = \pm 1$$

or, for $\beta_0 \approx 100 \text{ m}$

$$\varepsilon_0 = \pm \frac{2}{\beta_0} \approx \pm 0.02 \text{ m}^{-1}.$$

Missing one quadrupole (ε_o = ±0.04 m⁻¹) will take us beyond the stability limit. The most we can tolerate is missing $\frac{1}{2}$ of a quadrupole.

The "invariant" U is clearly also an approximate invariant valid only when $\frac{\Delta\beta}{\beta}$ << 1. We can put U in a more conventional form.

$$U = \left(\frac{\Delta\beta}{\beta}\right)^{2} + \frac{1}{4\nu^{2}} \left[\frac{d}{d\theta} \left(\frac{\Delta\beta}{\beta}\right)\right]^{2}$$

$$= \left(\frac{\Delta\beta}{\beta}\right)^{2} + \frac{1}{4} \left[\beta \frac{d}{dz} \left(\frac{\Delta\beta}{\beta}\right)\right]^{2}$$

$$= \left(\frac{\Delta\beta}{\beta}\right)^{2} + \left[-\frac{\beta'}{2} \frac{\Delta\beta}{\beta} + \frac{(\Delta\beta)'}{2}\right]^{2}$$

$$= \left(\frac{\Delta\beta}{\beta}\right)^2 + \alpha^2 \left(\frac{\Delta\beta}{\beta} - \frac{\Delta\alpha}{\alpha}\right)^2 \tag{4A}$$

where prime means $\frac{d}{dz}$ and $\alpha = -\frac{\beta'}{2}$, $\Delta \alpha = -\frac{(\Delta \beta)'}{2}$.

D. A. Edwards gave the exact form of this invariant as

$$U = \frac{\left(\frac{\Delta\beta}{\beta}\right)^2 + \alpha^2 \left(\frac{\Delta\beta}{\beta} - \frac{\Delta\alpha}{\alpha}\right)^2}{1 + \frac{\Delta\beta}{\beta}}.$$
 (5A)

His derivation is given below: Consider two locations 1 and 2 around the closed orbit with no focusing bump in between. The transfer matrices from locations 1 and 2 all the way around the closed orbit are respectively

$$\overline{M}_{1} = \cos 2\pi \overline{v} + \overline{J}_{1} \sin 2\pi \overline{v}$$

$$= \cos 2\pi \overline{v} + (J_{1} + \Delta J_{1}) \sin 2\pi \overline{v}$$

and

$$\overline{M}_2 = \cos 2\pi \overline{\nu} + \overline{J}_2 \sin 2\pi \overline{\nu}$$
$$= \cos 2\pi \overline{\nu} + (J_2 + \Delta J_2) \sin 2\pi \overline{\nu}.$$

Writing the transfer matrix from location 1 to location 2 as M_{12} (there is no need for a bar on top because there is no bump between locations 1 and 2) the relation $\overline{M}_2 = M_{12}M_1M_{12}^{-1}$ leads to

$$J_2 + \Delta J_2 = M_{12} (J_1 + \Delta J_1) M_{12}^{-1}$$

Remembering that $J_2 = M_{12}J_1M_{12}^{-1}$ we get

$$\Delta J_2 = M_{12} \Delta J_1 M_{12}^{-1}$$

which shows that the determinant of ΔJ is invariant within a bump-free region. We can, thus, write

$$U = -|\Delta J| = (\Delta \alpha)^2 - (\Delta \beta)(\Delta \gamma) = invariant.$$

Substituting

$$\Delta \gamma = \frac{1 + (\alpha + \Delta \alpha)^2}{\beta + \Delta \beta} - \frac{1 + \alpha^2}{\beta}$$

$$= -\frac{\frac{\Delta \beta}{\beta} + \alpha^2 \left[\frac{\Delta \beta}{\beta} - 2 \frac{\Delta \alpha}{\alpha} - \left(\frac{\Delta \alpha}{\alpha} \right)^2 \right]}{\beta \left(1 + \frac{\Delta \beta}{\beta} \right)}$$

we get directly the expression (5A).

I am grateful to Dr. S. Ohnuma for pointing out the error in TM-313 and to Dr. D. Edwards for the derivation of the exact expression of the invariant U, and to both of them for several illuminating discussions.